Annals of Pediatric Cardiology
About us | Current Issue | Archives | Ahead of Print | Instructions | Submission | Subscribe | Advertise | Contact | Login 
 


 

 
     
    Advanced search
 

 
 
     
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
    Introduction
    Methods
    Results
    Discussion
    Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed6550    
    Printed311    
    Emailed3    
    PDF Downloaded871    
    Comments [Add]    
    Cited by others 11    

Recommend this journal

 


 
ORIGINAL ARTICLE Table of Contents   
Year : 2009  |  Volume : 2  |  Issue : 1  |  Page : 36-40
Transcatheter closure of patent ductus arteriosus: Evaluating the effect of the learning curve on the outcome


1 Department of Pediatric Cardiology, The International Medical Center, Jeddah, Saudi Arabia
2 Department of Pediatric Cardiology, King Abdulaziz University, Jeddah, Saudi Arabia

Click here for correspondence address and email

Date of Web Publication17-Jun-2009
 

   Abstract 

Background and Objectives : Initial experience with transcatheter closure of patent ductus arteriosus (PDA) using detachable coils and Amplatzer duct occluder devices is reported. We evaluated the outcome, complications, and influence of the learning curve, and also assessed the need of surgical backup for such interventional procedures.
Methods: From January 2000 to December 2004, 121 patients underwent transcatheter closure of PDA. Aortic angiogram was performed to evaluate the size, position, and shape of the duct for appropriately choosing the occluder device type and size. A second aortic angiogram was performed 10 minutes after device deployment. Echocardiography was repeated at intervals of 24 hours, then at 1, 3, and 6 months after the procedure to assess complications. Stepwise multiple regression analysis was used to assess the role of experience in improving the outcome of the procedure.
Results: Of 121 cases, four patients had pulmonary artery embolization of the occluder device which was successfully retrieved in the catheterization laboratory, while two others had embolization that required surgical intervention. Four patients had temporary residual leak, nine had protrusion of the device into the aorta without significant Doppler pressure gradient or hemolysis on follow-up, and five had partial hemodynamically insignificant obstruction to the left pulmonary artery. Statistical analysis showed that the effect of the learning curve and experience was responsible for 93% improvement in the procedural outcome over the five-year study period.
Conclusion:
Transcatheter occlusion of PDA is safe and effective alternative to surgery. Complications occurred in those with unfavorable duct anatomy and with the use of multiple coils. Surgical backup was important for such interventional procedures. Experience played a major role in the proper choice of device type and size which greatly influenced the outcome of the procedure.

Keywords: Amplatzer duct occluder, coil closure, complications, experience

How to cite this article:
Azhar AS, Abd El-Azim AA, Habib HS. Transcatheter closure of patent ductus arteriosus: Evaluating the effect of the learning curve on the outcome. Ann Pediatr Card 2009;2:36-40

How to cite this URL:
Azhar AS, Abd El-Azim AA, Habib HS. Transcatheter closure of patent ductus arteriosus: Evaluating the effect of the learning curve on the outcome. Ann Pediatr Card [serial online] 2009 [cited 2019 May 24];2:36-40. Available from: http://www.annalspc.com/text.asp?2009/2/1/36/52804



   Introduction Top


Patent ductus arteriosus (PDA) accounts for 6-11% of all congenital heart defects. [1],[2] Complications of PDA include congestive heart failure, repeated chest infections, pulmonary hypertension, and an increased risk of infective endocarditis. Transcatheter closure of PDA has largely replaced surgical ligation in different age groups. [3],[4],[5],[6],[7] Currently, surgical intervention is restricted to premature babies or small infants with large symptomatic PDA, cases with unfavorable duct anatomy, and whenever the cost of the closure devices is unaffordable. [1] Common complications of transcatheter closure of PDA include residual shunt,, left pulmonary artery (LPA) obstruction, protrusion of the device into the aorta, and embolization of the device [8],[9],[10] Incidence of complications increases with certain types and large size ducts, and with the use of multiple coils for occlusion. [11] There are only a few reports correlating outcome and complications with the learning curve and experience. [12],[13],[14] In this study, we are reporting our initial experience with PDA closure using detachable coils and Amplatzer duct occluder (ADO). Our focus was on reporting the complications of transcatheter closure of PDA using different PDA closure devices and comparing them with others. We also evaluated the influence of the learning curve and experience of the cardiologist on the outcome and complications.


   Methods Top


The study was conducted at a moderate sized pediatric cardiac center, established in Al-Noor Hospital, Makkah, Saudi Arabia, in 1999. The study was approved by the Ethics committee of the hospital. From January 2000 to December 2004, 121 patients underwent transcatheter closure of PDA. A single, recently certified pediatric cardiologist performed all the procedures. Seventy six patients were females and 45 were males. Age ranged from 4 months to 18 years (median 5.1 years), weight from 4-55 kg (median 15.3 kg), PDA length was between 2-10 mm (median 6.2 mm), and the PDA diameter at the narrowest point ranged from 1-10 mm (median 2.9 mm). Fifteen patients had other associated lesions in the form of ventricular septal defect, atrial septal defect, and mild pulmonary valvular stenosis; however, none of these lesions required any treatment or intervention.

All patients had clinical evaluation and echocardiographic confirmation of the diagnosis. Cardiac catheterization was done for hemodynamic assessment and shunt estimation. This was followed by a biplane aortic angiogram to evaluate the size, position, and shape of the duct for appropriate choice of closure device type and size. Devices used for occlusion were detachable coils and ADOs.

Detachable coils were used for patients with small PDAs of ≤2.5 mm at the narrowest diameter. ADOs were used for PDAs that were >2.5 mm. [15] However, some exceptions to this rule had to be made due to nonavailability of the devices at the time of procedure. The sizes of the ADOs used were 2 mm larger than the narrowest diameter of the PDA. The length and diameter of the coils used were double the length and diameter of the PDA.

A second aortic angiogram was performed 10 minutes after device deployment. The decision regarding using multiple coils was made after documenting the residual shunt following the deployment of the first coil. Echocardiography was repeated at intervals of 24 hours and 1, 3, and 6 months after the procedure to assess residual leak and other complications.

Procedures lasted 45-180 minutes (median 115 minutes). Fluoroscopy time ranged between 5-36 minutes (median 17 minutes). Shunt calculations revealed Qp/Qs of 1.2-3.1 (median 2.1). The majority of patients (71%) had megaphone duct (type A). [Table 1] summarizes the PDA types among the study population.

Detachable coils were used in 75 cases (62%), whereas ADOs were used in 46 patients (38%). Ninety three patients (77%) attended the 6-month follow-up; unfortunately, the remaining 23% were lost to follow-up.

Multiple variables were evaluated to assess their effect on the outcome of the procedure. The stepwise multiple regression analysis was used to reduce the independent variables to the minimum number of effective variables. The software used was the SPSS version 15(SPSS ver. 15). The dependent variable was the complications encountered. The independent variables were age and weight of the patient, length and diameter of the PDA, procedure time, and cardiologist' experience.


   Results Top


One hundred and twenty one patients underwent transcatheter closure of PDA during the study period. Twenty six patients had complications. Of these, 13 patients underwent PDA closure with detachable coils and 13 cases had their PDAs closed with ADOs. The commonest complication was protrusion of the device into the aorta, occurring in three cases with coils and six cases with ADOs. Partial LPA obstruction complicated five cases of which three had ADOs; none of them had baseline LPA stenosis. None of the patients had major blood loss requiring blood transfusion. Temporary loss of peripheral pulse was noted in two cases with ADOs.

Device embolization occurred in six cases. Four coils were successfully retrieved in catheterization laboratory. One Amplatzer device and one coil needed surgical intervention for retrieval. Residual leak was encountered in four cases (three coils and one Amplatzer). Two of them resolved within 24 hours, and the other two cases resolved after one month. No delayed device migration, hemolysis, thromboembolic manifestations, wire fractures, arrhythmias, or deaths were encountered.

Most complications occurred in the first two years of our experience after establishing the new interventional pediatric program. Incidence of complications was minimal in the remaining three years of the study period. [Table 2] shows the incidence of complications throughout the five-year study period. [Figure 1] shows the declining incidence of complications in relation to the number of patients over the five-year study period.

Stepwise multiple regression analysis was performed to determine the effect of six independent factors (age and sex of patients, diameter and length of the duct, procedure time, and cardiologist's experience) on the occurrence of complications (the dependent factor). Two of the independent variables (experience and duct diameter) showed significant regression coefficients. The coefficient for experience was -0.23 indicating a significant negative relationship between experience and the occurrence of complications. On the other hand, duct diameter showed a coefficient of 0.56 indicating a significantly positive relationship with the incidence of the encountered complications. R square was 0.93 for the effect of experience alone, and 0.98 for the combined effect of experience and PDA diameter on the outcome.


   Discussion Top


Transcatheter closure of PDA is a safe and effective alternative therapeutic modality to surgical intervention. [8],[16],[17],[18],[19],[20],[21],[22] We report our experience with 121 cases performed over a period of five years with specific emphasis on complications and their relationship to cardiologist's experience.

Device embolization occurred in six cases (4.9%). Retrieval in the catheterization laboratory was successful in four cases. In all these four cases multiple coils were used for closure of large (≥4 mm diameter at the narrowest point) PDAs, and all coils embolized to the right pulmonary artery (RPA). Coils were used to close these large PDAs because ADOs were not available at the time of the procedure. In retrospect we believe that the cardiologist underestimated the size of the PDA and used smaller coils. Two out of the six cases required surgical intervention. In one of them, a large 8/4 coil embolized to the RPA and blocked a major branch and could not be retrieved in the catheterization laboratory. In the other case, a large 12/10 ADO embolized and obstructed the descending aorta in a patient with pulmonary hypertension, that is, right-to-left shunt. In this particular patient, the cardiologist elected to close the PDA because the patient had atrial septal defect, and it was thought that the pulmonary hypertension was reactive. All cases with embolization were within the first two years of our practice. This highlights the effect of the learning curve and the importance of experience in reducing the incidence of such a complication. [5],[11],[17] Only a few cases may require surgical intervention to retrieve embolized devices. [23] This occurred in two out of 121 cases (1.6%) in this study. Still, backup surgical service remains an important life-saving precaution. We believe it should be available in all interventional pediatric cardiac centers.

Protrusion of the occlusion device into the aorta is a common complication of transcatheter closure of PDA. [8],[9],[10] In our series, it occurred in nine cases (7%). In six of these cases ADO was used to close the PDA. The main reason was related to the size of the Amplatzer retention disc, which was larger than the size of the ductus ampulla. In one case, the duct was tubular (type C). In three cases, the ducts were of type A, but the coils used were larger in diameter than the ampulla. However, none of the cases had hemolysis or significant Doppler pressure gradient throughout the follow-up. The duct morphology plays a major role in the development of this particular complication; we observed that type C ducts and ducts with small ampulla are more prone to develop this complication. A specially designed device is recently used to reduce the incidence of device protrusion into the aorta. [24]

Obstruction to the LPA is another common complication of the procedure. [8],[9],[10] In our series, five cases (4%) developed this complication. Three of them had Amplatzer devices and two had coils. All five cases had short ductal length of <3 mm. None of them had clinical symptoms, and the highest pressure gradient measured by serial Doppler follow-up studies was 20 mm Hg.

Residual leak was noted in three cases with coils and only one case with Amplatzer device. Within 24 hours, it disappeared in two of them. At one-month follow-up, none had any residual leak. Thus, this particular complication was minimal in our series. Elimination of the residual leak is very important to prevent hemolysis. [25],[26]

The results documented in our series are in line with the results reported in many other interventional pediatric cardiac centers around the world. [5],[11],[18],[20],[22],[27],[28],[29] The complications encountered were mainly with large, short, and tubular (type C) ducts as has been reported earlier. [8],[9],[11],[14],[30],[31]

Statistical analysis of the results showed a significant negative relationship between experience and complications. The effect of the learning curve was responsible for 93% improvement in the procedure outcome. Experience gained throughout the five-year study period was reflected on better case selection, accurate sizing of the duct length and diameter, better choice of closure device type and size, adopting different techniques to fit coils well in the ductus ampulla, and confirming the position of the device before releasing and deployment. This is highly indicative of the importance of experience and the rising learning curve in reducing the incidence of complications during transcatheter PDA closure.


   Conclusion Top


Our experience with transcatheter closure of PDA using detachable coils and AODs proved to be as safe and effective as reported in various interventional pediatric cardiology centers around the world. Residual leak was particularly minimal in our series. The results underline the importance of surgical backup to safeguard against certain complications. The learning curve and accumulating experience also play a major role in choosing the proper device and its size. This is crucial to minimize the complications.

 
   References Top

1.Rao PS. Coil occlusion of patent ductus arteriosus. J Invasive Cardiol 2001;13:36-8.  Back to cited text no. 1  [PUBMED]  
2.Krichenko A, Benson L, Burrows P, Mφes CA, McLaughlin P, Freedom RM. Angiographic classification of the isdolated persistently patent ductus arteriosus and implications for percutaneous catheter occlusion. Am J Cardiol 1989;63:877-80.  Back to cited text no. 2    
3.Brown S, Bruwer A, Al-Zaghal A, Claassens A. Effectiveness of single detachable COOK coils in closure of the patent ductus arteriosus. Cardiovasc J S Afr 2004;15:76-80.  Back to cited text no. 3  [PUBMED]  [FULLTEXT]
4.Butera G, De Rosa G, Chessa M, Piazza L, Delogu A, Frigiola A, et al. Transcatheter closure of persistent ductus arteriosus with the Amplatzer duct occluder in very young symptomatic children. Heart 2004;90:1467-70.  Back to cited text no. 4  [PUBMED]  [FULLTEXT]
5.Hill SL, Hijazi ZM, Hellenbrand WE, Cheatham JP. Evaluation of the Amplatzer vascular plug for embolization of peripheral vascular malformations associated with congenital heart disease. Catheter Cardiovasc Interv 2006;67:113-9.  Back to cited text no. 5  [PUBMED]  [FULLTEXT]
6.Kumar RK, Anil SR, Kannan BR, Philip A, Sivakumar K. Bioptome-assisted coil occlusion of moderate-large patent ductus arteriosus in infants and small children. Catheter Cardiovasc Interv 2004;62:266-71.  Back to cited text no. 6  [PUBMED]  [FULLTEXT]
7.Moore JW, Levi DS, Moore SD, Schneider DJ, Berdjis F. Interventional treatment of patent ductus arteriosus in 2004. Catheter Cardiovasc Interv 2005;64:91-101.  Back to cited text no. 7  [PUBMED]  [FULLTEXT]
8.Atiq M, Aslam N, Kazmi KA. Transcatheter closure of small-to-large patent ductus arteriosus with different devices: Queries and challenges. J Invasive Cardiol 2007;19:295-8.  Back to cited text no. 8  [PUBMED]  [FULLTEXT]
9.Ewert P. Challenges encountered during closure of patent ductus arteriosus. Pediatr Cardiol 2005;26:224-9.  Back to cited text no. 9  [PUBMED]  [FULLTEXT]
10.Rutledge JM. Transcatheter closure of the patent ductus arteriosus. Expert Rev Cardiovasc Ther 2003;1:411-9.  Back to cited text no. 10  [PUBMED]  [FULLTEXT]
11.Santoro G, Bigazzi MC, Carrozza M, Palladino MT, Sarubbi B, Scarpati C, et al. Percutaneous treatment of moderate-to-large patent ductus arteriosus with different devices: Early and mid-term results. Ital Heart J 2005;6:396-400.  Back to cited text no. 11  [PUBMED]  
12.Carminati M, Butera G, Chessa M, De Giovanni J, Fisher G, Gewillig M, et al. Transcatheter closure of congenital ventricular septal defects: Results of the European Registry. Eur Heart J 2007;28:2361-8.  Back to cited text no. 12  [PUBMED]  [FULLTEXT]
13.Gray DT, Walker AM, Fyler DC, Chalmers TC. Examination of the early 'learning curve' for transcatheter closure of patent ductus arteriosus using the Rashkind occluder. Circulation 1994;90:II36-42.  Back to cited text no. 13  [PUBMED]  
14.Owada CY, Teitel DF, Moore P. Evaluation of Gianturco coils for closure of large (> or = 3.5 mm) patent ductus arteriosus. J Am Coll Cardiol 1997;30:1856-62.  Back to cited text no. 14    
15.Wang JK, Hwang JJ, Chiang FT, Wu MH, Lin MT, Lee WL, et al. A strategic approach to transcatheter closure of patent ductus: Gianturco coils for small-to-moderate ductus and Amplatzer duct occluder for large ductus. Int J Cardiol 2006;106:10-5.  Back to cited text no. 15  [PUBMED]  [FULLTEXT]
16.Rao PS, editor. Catheter-based devices for treatment of non-coronary cardiovascular disease in adults and children. Philadelphia: Lippincott Williams and Wilkins; 2003. p. 219-28.  Back to cited text no. 16    
17.Chessa M, Carrozza M, Butera G, Negura D, Piazza L, Giamberti A, et al. The impact of interventional cardiology for the management of adults with congenital heart defects. Catheter Cardiovasc Interv 2006;67:258-64.  Back to cited text no. 17  [PUBMED]  [FULLTEXT]
18.Lee CH, Leung YL, Kwong NP, Kwok OH, Yip AS, Chow WH. Transcatheter closure of patent ductus arteriosus in Chinese adults: Immediate and long-term results. J Invasive Cardiol 2003;15:26-30.  Back to cited text no. 18  [PUBMED]  
19.Rashkind WJ, Cuaso CC. Transcatheter closure of patent ductus arteriosus: Successful use in a 3.5-Kg infant. Pediatr Cardiol 1979;1:3-7.  Back to cited text no. 19    
20.Wang JK, Wu MH, Hwang JJ, Chiang FT, Lin MT, Lue HC. Transcatheter closure of moderate to large patent ductus arteriosus with the Amplatzer duct occluder. Catheter Cardiovasc Interv 2007;69:572-8.  Back to cited text no. 20    
21.Yan C, Zhao S, Jiang S, Xu Z, Huang L, Zheng H, et al. Transcatheter closure of patent ductus arteriosus with severe pulmonary arterial hypertension in adults. Heart 2007;93:514-8.  Back to cited text no. 21  [PUBMED]  [FULLTEXT]
22.Wyllie J. Treatment of patent ductus arteriosus. Semin Neonatol 2003;8:425-32.  Back to cited text no. 22  [PUBMED]  [FULLTEXT]
23.Shahabuddin S, Atiq M, Hamid M, Amanullah M. Surgical removal of an embolised patent ductus arteriosus Amplatzer occluding device in a 4-year-old girl. Interact Cardiovasc Thorac Surg 2007;6:572-3.  Back to cited text no. 23  [PUBMED]  [FULLTEXT]
24.Vijayalakshmi IB, Chitra N, Rajasri R, Prabhudeva AN. Amplatzer angled duct occluder for closure of patent ductus arteriosus larger than the aorta in an infant. Pediatr Cardiol 2005;26:480-3.  Back to cited text no. 24  [PUBMED]  [FULLTEXT]
25.Gupta K, Rao PS. Severe intravascular hemolysis after transcatheter coil occlusion of patent ductus arteriosus. J Invasive Cardiol 2005;17:E15-7.  Back to cited text no. 25  [PUBMED]  
26.Vavuranakis M, Tzannos KA, Thanopoulos BD, Vlasis K, Stefanadis C. Severe hemolysis complicating transcatheter occlusion of a patent ductus arteriosus: The importance of elimination of residual flow. Hellenic J Cardiol 2007;48:373-6.  Back to cited text no. 26    
27.Masura J, Tittel P, Gavora P, Podnar T. Long-term outcome of transcatheter patent ductus arteriosus closure using Amplatzer duct occluders. Am Heart J 2006;151:755.e7-755.e10.  Back to cited text no. 27  [PUBMED]  [FULLTEXT]
28.Pass RH, Hijazi Z, Hsu DT, Lewis V, Hellenbrand WE. Multicenter USA Amplatzer patent ductus arteriosus occlusion device trial: Initial and one-year results. J Am Coll Cardiol 2004;44:513-9.  Back to cited text no. 28  [PUBMED]  [FULLTEXT]
29.Santoro G, Bigazzi MC, Palladino MT, Russo MG, Carrozza M, Calabrò R. Comparison of Percutaneous closure of large patent ductus arteriosus by multiple coils versus the Amplatzer duct occluder device. Am J Cardiol 2004;94:252-5.  Back to cited text no. 29    
30.Huang TC, Hsieh KS, Lee CL, Lin CC. Safety and efficacy of using 0.052-inch Gianturco coil for closure of large (> or = 4 mm) patent ductus arteriosus. J Invasive Cardiol 2002;14:173-7.  Back to cited text no. 30    
31.Javois AJ, Husayni TS, Thoele D, Van Bergen AH. Inadvertent stenting of patent ductus arteriosus with Amplatzer Vascular Plug. Catheter Cardiovasc Interv 2006;67:485-9.  Back to cited text no. 31  [PUBMED]  [FULLTEXT]

Top
Correspondence Address:
Ahmad S Azhar
The International Medical Center, PO Box 2172, Jeddah 21451
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-2069.52804

Rights and Permissions


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2]

This article has been cited by
1 Surgical Removal of Amplatzer Duct Occluder for a Patent Ductus Arteriosus
Gen Shinohara,Koji Nomura,Kouichi Muramatsu
Japanese Journal of Cardiovascular Surgery. 2015; 44(1): 25
[Pubmed] | [DOI]
2 Outcomes of thoracoscopic clipping versus transcatheter occlusion of patent ductus arteriosus: Randomized clinical trial
Nguyen Thanh Liem,Cao Viet Tung,Nguyen Van Linh,To Manh Tuan,Le Hong Quang,Tran Thanh Tu
Journal of Pediatric Surgery. 2014; 49(2): 363
[Pubmed] | [DOI]
3 Extrinsic bronchial compression due to patent ductus arteriosus closure device
Fitzmaurice, G.J. and Coleman, D.M. and Walsh, K.P. and Oslizlok, P. and Russell, J.D. and McGuinness, J.G.
Annals of Thoracic Surgery. 2013; 95(6): e143-e145
[Pubmed]
4 Cardi-O-Fix duct occluder versus amplatzer duct occluder for closure of patent ductus arteriosus
Ahmet Celebi,Ibrahim Halil Demir,Türkay Saritas,Reyhan Dedeoglu,Ilker Kemal Yucel,Fadli Demir,Abdullah Erdem
Catheterization and Cardiovascular Interventions. 2013; 82(6): 961
[Pubmed] | [DOI]
5 Percutaneous transcatheter closure of patent ductus arteriosus: Initial experience of Sohag University
Safaa Husein Ali,Sharaf Eldeen Shazly Abdalla
The Egyptian Heart Journal. 2013;
[Pubmed] | [DOI]
6 Extrinsic Bronchial Compression Due to Patent Ductus Arteriosus Closure Device
Gerard J. Fitzmaurice,David M. Coleman,Kevin P. Walsh,Paul Oslizlok,John D. Russell,Jonathan G. McGuinness
The Annals of Thoracic Surgery. 2013; 95(6): e143
[Pubmed] | [DOI]
7 Results of patent ductus arteriosus closure during adulthood using different devices [Farkli cihazlar kullanilarak erişkin yaşta kapatilan patent duktus arteriyozus olgularinin sonuçlari]
Erdem, A. and Demir, F. and Saritaş, T. and Akdeniz, C. and Zeybek, C. and Yalçin, Y. and Aydemir, N.A. and Çelebi, A.
Turkish Journal of Thoracic and Cardiovascular Surgery. 2011; 19(3): 323-328
[Pubmed]
8 To close or not to close: The very small patent ductus arteriosus
Fortescue, E.B. and Lock, J.E. and Galvin, T. and McElhinney, D.B.
Congenital Heart Disease. 2010; 5(4): 354-365
[Pubmed]
9 To Close or Not to Close: The Very Small Patent Ductus Arteriosus : Closure of the Very Small PDA
Elizabeth B. Fortescue, James E. Lock, Teresa Galvin, Doff B. McElhinney
Congenital Heart Disease. 2010; 5(4): 354
[VIEW] | [DOI]
10 Estimation of patent ductus arteriosus diameters by colour Doppler echocardiography in children
Hamid Amoozgar, Manochehr Soltani, Siros Cheriki
Cardiology in the Young. 2010; 20(6): 648
[VIEW] | [DOI]
11 Percutaneous occlusion of patent ductus arteriosus with controlled-release coils | [Oclusão percutânea do canal arterial com molas de liberação controlada]
Lopes, R.M., Gonçalves, F.M., De Rezende Barbosa, M., Martins, C.N., Vrandecic, M.O.
Revista Brasileira de Cardiologia Invasiva. 2010; 18(1): 68-73
[Pubmed]



 

Top