Next article Search Articles Instructions for authors  Access Statistics | Citation Manager  
REVIEW ARTICLE  

 Article Access Statistics
    Viewed3337    
    Printed48    
    Emailed2    
    PDF Downloaded569    
    Comments [Add]    

Recommend this journal

Inherited arrhythmias: The cardiac channelopathies


1 Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
2 Department of Pediatric Cardiology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA

Correspondence Address:
Shashank P Behere
Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire 03766
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-2069.164695

Rights and Permissions

Year : 2015  |  Volume : 8  |  Issue : 3  |  Page : 210-220

 

SEARCH
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles

  Article in PDF (2,143 KB)
Email article
Print Article
Add to My List
Ion channels in the myocardial cellular membrane are responsible for allowing the cardiac action potential. Genetic abnormalities in these channels can predispose to life-threatening arrhythmias. We discuss the basic science of the cardiac action potential; outline the different clinical entities, including information regarding overlapping diagnoses, touching upon relevant genetics, new innovations in screening, diagnosis, risk stratification, and management. The special considerations of sudden unexplained death and sudden infant death syndrome are discussed. Scientists and clinicians continue to reconcile the rapidly growing body of knowledge regarding the molecular mechanisms and genetics while continuing to improve our understanding of the various clinical entities and their diagnosis and management in clinical setting. Two separate searches were run on the National Center for Biotechnology Information's website. The first using the term cardiac channelopathies was run on the PubMed database using filters for time (published in past 5 years) and age (birth-18 years), yielding 47 results. The second search using the medical subject headings (MeSH) database with the search terms "Long QT Syndrome" (MeSH) and "Short QT Syndrome" (MeSH) and "Brugada Syndrome" (MeSH) and "Catecholaminergic Polymorphic Ventricular Tachycardia" (MeSH), applying the same filters yielded 467 results. The abstracts of these articles were studied, and the articles were categorized and organized. Articles of relevance were read in full. As and where applicable, relevant references and citations from the primary articles where further explored and read in full.






[FULL TEXT] [PDF]*
 

 

 

 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 
 
 Reader Comments
 Email Alert *
  *
 * Requires registration (Free)
 
 REVIEW ARTICLE
 




1 Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
2 Department of Pediatric Cardiology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA

Correspondence Address:
Shashank P Behere
Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire 03766
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-2069.164695

Rights and Permissions

Ion channels in the myocardial cellular membrane are responsible for allowing the cardiac action potential. Genetic abnormalities in these channels can predispose to life-threatening arrhythmias. We discuss the basic science of the cardiac action potential; outline the different clinical entities, including information regarding overlapping diagnoses, touching upon relevant genetics, new innovations in screening, diagnosis, risk stratification, and management. The special considerations of sudden unexplained death and sudden infant death syndrome are discussed. Scientists and clinicians continue to reconcile the rapidly growing body of knowledge regarding the molecular mechanisms and genetics while continuing to improve our understanding of the various clinical entities and their diagnosis and management in clinical setting. Two separate searches were run on the National Center for Biotechnology Information's website. The first using the term cardiac channelopathies was run on the PubMed database using filters for time (published in past 5 years) and age (birth-18 years), yielding 47 results. The second search using the medical subject headings (MeSH) database with the search terms "Long QT Syndrome" (MeSH) and "Short QT Syndrome" (MeSH) and "Brugada Syndrome" (MeSH) and "Catecholaminergic Polymorphic Ventricular Tachycardia" (MeSH), applying the same filters yielded 467 results. The abstracts of these articles were studied, and the articles were categorized and organized. Articles of relevance were read in full. As and where applicable, relevant references and citations from the primary articles where further explored and read in full.






[FULL TEXT] [PDF]*


        
Print this article     Email this article