Next article Search Articles Instructions for authors  Access Statistics | Citation Manager  
ORIGINAL ARTICLE  

 Article Access Statistics
    Viewed734    
    Printed17    
    Emailed0    
    PDF Downloaded73    
    Comments [Add]    

Recommend this journal

Three-dimensional-printed cardiac prototypes aid surgical decision-making and preoperative planning in selected cases of complex congenital heart diseases: Early experience and proof of concept in a resource-limited environment


1 Department of Pediatric Cardiology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
2 Department of Pediatric Cardiology, CARE Hospitals, Hyderabad, Telangana, India
3 Department of Radiology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
4 Department of Cardiothoracic Surgery, Amrita Institute of Medical Sciences, Kochi, Kerala, India

Correspondence Address:
Mahesh Kappanayil
Department of Pediatric Cardiology, Amrita Institute of Medical Sciences, Amrita Lane, Kochi - 682 041, Kerala
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/apc.APC_149_16

Rights and Permissions

Year : 2017  |  Volume : 10  |  Issue : 2  |  Page : 117-125

 

SEARCH
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles

  Article in PDF (1,587 KB)
Email article
Print Article
Add to My List
Introduction: Three-dimensional. (3D) printing is an innovative manufacturing process that allows computer.assisted conversion of 3D imaging data into physical “printouts” Healthcare applications are currently in evolution. Objective: The objective of this study was to explore the feasibility and impact of using patient-specific 3D-printed cardiac prototypes derived from high.resolution medical imaging data. (cardiac magnetic resonance imaging/computed tomography. [MRI/CT]) on surgical decision-making and preoperative planning in selected cases of complex congenital heart diseases. (CHDs). Materials and Methods: Five patients with complex CHD with previously unresolved management decisions were chosen. These included two patients with complex double.outlet right ventricle, two patients with criss-cross atrioventricular connections, and one patient with congenitally corrected transposition of great arteries with pulmonary atresia. Cardiac MRI was done for all patients, cardiac CT for one; specific surgical challenges were identified. Volumetric data were used to generate patient-specific 3D models. All cases were reviewed along with their 3D models, and the impact on surgical decision-making and preoperative planning was assessed. Results: Accurate life-sized 3D cardiac prototypes were successfully created for all patients. The models enabled radically improved 3D understanding of anatomy, identification of specific technical challenges, and precise surgical planning. Augmentation of existing clinical and imaging data by 3D prototypes allowed successful execution of complex surgeries for all five patients, in accordance with the preoperative planning. Conclusions: 3D-printed cardiac prototypes can radically assist decision-making, planning, and safe execution of complex congenital heart surgery by improving understanding of 3D anatomy and allowing anticipation of technical challenges.






[FULL TEXT] [PDF]*
 

 

 

 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 
 
 Reader Comments
 Email Alert *
  *
 * Requires registration (Free)
 
 ORIGINAL ARTICLE
 




1 Department of Pediatric Cardiology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
2 Department of Pediatric Cardiology, CARE Hospitals, Hyderabad, Telangana, India
3 Department of Radiology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
4 Department of Cardiothoracic Surgery, Amrita Institute of Medical Sciences, Kochi, Kerala, India

Correspondence Address:
Mahesh Kappanayil
Department of Pediatric Cardiology, Amrita Institute of Medical Sciences, Amrita Lane, Kochi - 682 041, Kerala
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/apc.APC_149_16

Rights and Permissions

Introduction: Three-dimensional. (3D) printing is an innovative manufacturing process that allows computer.assisted conversion of 3D imaging data into physical “printouts” Healthcare applications are currently in evolution. Objective: The objective of this study was to explore the feasibility and impact of using patient-specific 3D-printed cardiac prototypes derived from high.resolution medical imaging data. (cardiac magnetic resonance imaging/computed tomography. [MRI/CT]) on surgical decision-making and preoperative planning in selected cases of complex congenital heart diseases. (CHDs). Materials and Methods: Five patients with complex CHD with previously unresolved management decisions were chosen. These included two patients with complex double.outlet right ventricle, two patients with criss-cross atrioventricular connections, and one patient with congenitally corrected transposition of great arteries with pulmonary atresia. Cardiac MRI was done for all patients, cardiac CT for one; specific surgical challenges were identified. Volumetric data were used to generate patient-specific 3D models. All cases were reviewed along with their 3D models, and the impact on surgical decision-making and preoperative planning was assessed. Results: Accurate life-sized 3D cardiac prototypes were successfully created for all patients. The models enabled radically improved 3D understanding of anatomy, identification of specific technical challenges, and precise surgical planning. Augmentation of existing clinical and imaging data by 3D prototypes allowed successful execution of complex surgeries for all five patients, in accordance with the preoperative planning. Conclusions: 3D-printed cardiac prototypes can radically assist decision-making, planning, and safe execution of complex congenital heart surgery by improving understanding of 3D anatomy and allowing anticipation of technical challenges.






[FULL TEXT] [PDF]*


        
Print this article     Email this article