Next article Search Articles Instructions for authors  Access Statistics | Citation Manager  
ORIGINAL ARTICLE  

 Article Access Statistics
    Viewed673    
    Printed35    
    Emailed0    
    PDF Downloaded78    
    Comments [Add]    

Recommend this journal

Transposition of the great arteries: A laterality defect in the group of heterotaxy syndromes or an outflow tract malformation?


1 College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
2 Department of Cardiac Sciences, King Abdulaziz Cardiac Center, Section of Pediatric Cardiology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia

Correspondence Address:
Prof. Talat Mesud Yelbuz
Department of Cardiac Sciences, King Abdulaziz Cardiac Center, Section of Pediatric Cardiology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Khashmalaan Road, P. O. Box: 22490, Mail Code: 1420, Riyadh 11426
Kingdom of Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/apc.APC_24_18

Rights and Permissions

Year : 2018  |  Volume : 11  |  Issue : 3  |  Page : 237-249

 

SEARCH
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles

  Article in PDF (1,786 KB)
Email article
Print Article
Add to My List
Background/Aim: Transposition of the great arteries (TGA) is traditionally classified as a “conotruncal heart defect”, implying that TGA evolves from abnormal development of the outflow tract (OFT) of the embryonic heart. However, recently published genetic data suggest that TGA may be linked to laterality gene defects rather than OFT gene defects. The aim of our study was to clarify whether there is any statistically significant link between TGA and clinically diagnosed laterality defects (heterotaxy). Methods: Retrospective cross-sectional analysis of 533 patients diagnosed with TGA at our cardiac center over a period of 13 years (2002-2015). Hospital informatics and digital data recording systems were used for collecting patients' data and all patients were reviewed to check the echocardiograms for verification of the diagnosis, type (TGA, congenitally corrected TGA (ccTGA), and levo-position of the great arteries (LGA)), complexity of TGA, and all other variables (e.g., abdominal organ arrangement, cardiac position, presence or absence of other cardiac defects). Results: Of 533 TGA patients, 495 (92.9%) had the usual arrangement of the internal organs, 21 (3.9%) had mirror-imagery, 7 (1.3%) had left and 10 (1.8%) had right isomerism. 444 (83.3%) patients had TGA. The number of patients who had usual visceral arrangement in each TGA type was: 418 (94.1%) in TGA, 49 (92.4%) in ccTGA, and 28 (77.7%) in LGA. 6 (1.4%) TGA patients, 4 (11.1%) patients with LGA were found to have right isomerism, while no ccTGA patient presented with this asymmetry. 4 (0.9%) TGA patients, 1 (1.9%) ccTGA patient and 2 (5.6%) patients with LGA had left isomerism. Heterotaxy (mirror-imagery, left and right isomerism) was more associated with LGA than TGA or ccTGA with a statistically significant difference (P value of 0.001). Conclusion: In contrast to recently published genetic data, our morphological data do not disclose a significant link between TGA and heterotaxy.






[FULL TEXT] [PDF]*
 

 

 

 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 
 
 Reader Comments
 Email Alert *
  *
 * Requires registration (Free)
 
 ORIGINAL ARTICLE
 




1 College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
2 Department of Cardiac Sciences, King Abdulaziz Cardiac Center, Section of Pediatric Cardiology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia

Correspondence Address:
Prof. Talat Mesud Yelbuz
Department of Cardiac Sciences, King Abdulaziz Cardiac Center, Section of Pediatric Cardiology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Khashmalaan Road, P. O. Box: 22490, Mail Code: 1420, Riyadh 11426
Kingdom of Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/apc.APC_24_18

Rights and Permissions

Background/Aim: Transposition of the great arteries (TGA) is traditionally classified as a “conotruncal heart defect”, implying that TGA evolves from abnormal development of the outflow tract (OFT) of the embryonic heart. However, recently published genetic data suggest that TGA may be linked to laterality gene defects rather than OFT gene defects. The aim of our study was to clarify whether there is any statistically significant link between TGA and clinically diagnosed laterality defects (heterotaxy). Methods: Retrospective cross-sectional analysis of 533 patients diagnosed with TGA at our cardiac center over a period of 13 years (2002-2015). Hospital informatics and digital data recording systems were used for collecting patients' data and all patients were reviewed to check the echocardiograms for verification of the diagnosis, type (TGA, congenitally corrected TGA (ccTGA), and levo-position of the great arteries (LGA)), complexity of TGA, and all other variables (e.g., abdominal organ arrangement, cardiac position, presence or absence of other cardiac defects). Results: Of 533 TGA patients, 495 (92.9%) had the usual arrangement of the internal organs, 21 (3.9%) had mirror-imagery, 7 (1.3%) had left and 10 (1.8%) had right isomerism. 444 (83.3%) patients had TGA. The number of patients who had usual visceral arrangement in each TGA type was: 418 (94.1%) in TGA, 49 (92.4%) in ccTGA, and 28 (77.7%) in LGA. 6 (1.4%) TGA patients, 4 (11.1%) patients with LGA were found to have right isomerism, while no ccTGA patient presented with this asymmetry. 4 (0.9%) TGA patients, 1 (1.9%) ccTGA patient and 2 (5.6%) patients with LGA had left isomerism. Heterotaxy (mirror-imagery, left and right isomerism) was more associated with LGA than TGA or ccTGA with a statistically significant difference (P value of 0.001). Conclusion: In contrast to recently published genetic data, our morphological data do not disclose a significant link between TGA and heterotaxy.






[FULL TEXT] [PDF]*


        
Print this article     Email this article