Next article Search Articles Instructions for authors  Access Statistics | Citation Manager  
ORIGINAL ARTICLE  

 Article Access Statistics
    Viewed1747    
    Printed34    
    Emailed0    
    PDF Downloaded101    
    Comments [Add]    

Recommend this journal

Melody valve to replace the mitral valve in small children: Lessons learned


Children's Heart Centre and Children's Research Centre, University Children's Hospital, Zurich, Switzerland

Correspondence Address:
Prof. Dr. Hitendu Dave
Congenital Cardiovascular Surgeon, Children's Heart Centre and Children's Research Centre, University Children's Hospital, Zurich
Switzerland
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/apc.APC_74_20

Rights and Permissions

Year : 2021  |  Volume : 14  |  Issue : 1  |  Page : 35-41

 

SEARCH
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles

  Article in PDF (1,505 KB)
Email article
Print Article
Add to My List
Objective: Infants requiring mitral valve replacement have few viable options. Recently, stented bovine jugular vein graft (Melody) has been surgically implanted in such cases. Herein, we report our experience, elaborating on evolution of implantation technique, pitfalls, as well as long-term outcome (including late dilatability). Methods: Seven Melody valves were implanted (2013–2019). The median patient age and weight were 6.7 (1.8–30.5) months and 5.8 (4.6–9.5) kg, respectively. The indications for implantation were mitral stenosis and/or regurgitation postatrioventricular septal defect (AVSD) repair (5), congenital mitral valve dysplasia (1), and Shone's complex (1). Operative technique involved shortening the valve and creating a neo-sewing ring at 2/3 (atrial)–1/3 (ventricular) junction. Implantation was followed by intraoperative balloon dilatation. Results: Five out of seven patients survived the perioperative period (one death due to technical failure and the other due to acute respiratory distress syndrome postcardiopulmonary bypass). Two out of five medium-term survivors got transplanted (1) or died due to acute myeloid leukemia (1). No valves were replaced. The mean echo gradient at discharge was a median 4 (2–6) mmHg. None of the patients showed left ventricular outflow tract or pulmonary venous obstruction. Two Melody valves were dilated late (5 months and 3 years postoperatively), resulting in decreasing mean gradients from 6 to 1 and from 17 to 4 mmHg. At last follow-up, surviving Melody had a mean gradient of 4 (1–9) mmHg. Conclusions: Mitral valve replacement with a Melody valve is feasible in infants, is reproducible, shows good immediate results, and offers the possibility of later dilatation. This technique offers a better solution compared to the existing alternatives for infants requiring a prosthetic mitral valve.






[FULL TEXT] [PDF]*
 

 

 

 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 
 
 Reader Comments
 Email Alert *
  *
 * Requires registration (Free)
 
 ORIGINAL ARTICLE
 




Children's Heart Centre and Children's Research Centre, University Children's Hospital, Zurich, Switzerland

Correspondence Address:
Prof. Dr. Hitendu Dave
Congenital Cardiovascular Surgeon, Children's Heart Centre and Children's Research Centre, University Children's Hospital, Zurich
Switzerland
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/apc.APC_74_20

Rights and Permissions

Objective: Infants requiring mitral valve replacement have few viable options. Recently, stented bovine jugular vein graft (Melody) has been surgically implanted in such cases. Herein, we report our experience, elaborating on evolution of implantation technique, pitfalls, as well as long-term outcome (including late dilatability). Methods: Seven Melody valves were implanted (2013–2019). The median patient age and weight were 6.7 (1.8–30.5) months and 5.8 (4.6–9.5) kg, respectively. The indications for implantation were mitral stenosis and/or regurgitation postatrioventricular septal defect (AVSD) repair (5), congenital mitral valve dysplasia (1), and Shone's complex (1). Operative technique involved shortening the valve and creating a neo-sewing ring at 2/3 (atrial)–1/3 (ventricular) junction. Implantation was followed by intraoperative balloon dilatation. Results: Five out of seven patients survived the perioperative period (one death due to technical failure and the other due to acute respiratory distress syndrome postcardiopulmonary bypass). Two out of five medium-term survivors got transplanted (1) or died due to acute myeloid leukemia (1). No valves were replaced. The mean echo gradient at discharge was a median 4 (2–6) mmHg. None of the patients showed left ventricular outflow tract or pulmonary venous obstruction. Two Melody valves were dilated late (5 months and 3 years postoperatively), resulting in decreasing mean gradients from 6 to 1 and from 17 to 4 mmHg. At last follow-up, surviving Melody had a mean gradient of 4 (1–9) mmHg. Conclusions: Mitral valve replacement with a Melody valve is feasible in infants, is reproducible, shows good immediate results, and offers the possibility of later dilatation. This technique offers a better solution compared to the existing alternatives for infants requiring a prosthetic mitral valve.






[FULL TEXT] [PDF]*


        
Print this article     Email this article